Blog

  • pocomc

    logo

    pocoMC is a Python implementation of the Preconditioned Monte Carlo method for accelerated Bayesian inference

    License: GPL v3 Documentation Status

    Getting started

    Brief introduction

    pocoMC is a Python package for fast Bayesian posterior and model evidence estimation. It leverages the Preconditioned Monte Carlo (PMC) algorithm, offering significant speed improvements over traditional methods like MCMC and Nested Sampling. Ideal for large-scale scientific problems with expensive likelihood evaluations, non-linear correlations, and multimodality, pocoMC provides efficient and scalable posterior sampling and model evidence estimation. Widely used in cosmology and astronomy, pocoMC is user-friendly, flexible, and actively maintained.

    Documentation

    Read the docs at pocomc.readthedocs.io for more information, examples and tutorials.

    Installation

    To install pocomc using pip run:

    pip install pocomc

    or, to install from source:

    git clone https://github.com/minaskar/pocomc.git
    cd pocomc
    python setup.py install

    Basic example

    For instance, if you wanted to draw samples from a 10-dimensional Rosenbrock distribution with a uniform prior, you would do something like:

    import pocomc as pc
    import numpy as np
    from scipy.stats import uniform
    
    n_dim = 10  # Number of dimensions
    
    prior = pc.Prior(n_dim*[uniform(-10.0, 20.0)]) # U(-10,10)
    
    def log_likelihood(x):
        return -np.sum(10.0*(x[:,::2]**2.0 - x[:,1::2])**2.0 \
                + (x[:,::2] - 1.0)**2.0, axis=1)
    
    sampler = pc.Sampler(
        prior=prior,
        likelihood=log_likelihood,
        vectorize=True,
    )
    sampler.run()
    
    samples, weights, logl, logp = sampler.posterior() # Weighted posterior samples
    
    logz, logz_err = sampler.evidence() # Bayesian model evidence estimate and uncertainty

    Attribution & Citation

    Please cite the following papers if you found this code useful in your research:

    @article{karamanis2022accelerating,
        title={Accelerating astronomical and cosmological inference with preconditioned Monte Carlo},
        author={Karamanis, Minas and Beutler, Florian and Peacock, John A and Nabergoj, David and Seljak, Uro{\v{s}}},
        journal={Monthly Notices of the Royal Astronomical Society},
        volume={516},
        number={2},
        pages={1644--1653},
        year={2022},
        publisher={Oxford University Press}
    }
    
    @article{karamanis2022pocomc,
        title={pocoMC: A Python package for accelerated Bayesian inference in astronomy and cosmology},
        author={Karamanis, Minas and Nabergoj, David and Beutler, Florian and Peacock, John A and Seljak, Uros},
        journal={arXiv preprint arXiv:2207.05660},
        year={2022}
    }

    Licence

    Copyright 2022-Now Minas Karamanis and contributors.

    pocoMC is free software made available under the GPL-3.0 License. For details see the LICENSE file.

    Visit original content creator repository https://github.com/minaskar/pocomc
  • pocomc

    logo

    pocoMC is a Python implementation of the Preconditioned Monte Carlo method for accelerated Bayesian inference

    License: GPL v3 Documentation Status

    Getting started

    Brief introduction

    pocoMC is a Python package for fast Bayesian posterior and model evidence estimation. It leverages the Preconditioned Monte Carlo (PMC) algorithm, offering significant speed improvements over traditional methods like MCMC and Nested Sampling. Ideal for large-scale scientific problems with expensive likelihood evaluations, non-linear correlations, and multimodality, pocoMC provides efficient and scalable posterior sampling and model evidence estimation. Widely used in cosmology and astronomy, pocoMC is user-friendly, flexible, and actively maintained.

    Documentation

    Read the docs at pocomc.readthedocs.io for more information, examples and tutorials.

    Installation

    To install pocomc using pip run:

    pip install pocomc

    or, to install from source:

    git clone https://github.com/minaskar/pocomc.git
    cd pocomc
    python setup.py install

    Basic example

    For instance, if you wanted to draw samples from a 10-dimensional Rosenbrock distribution with a uniform prior, you would do something like:

    import pocomc as pc
    import numpy as np
    from scipy.stats import uniform
    
    n_dim = 10  # Number of dimensions
    
    prior = pc.Prior(n_dim*[uniform(-10.0, 20.0)]) # U(-10,10)
    
    def log_likelihood(x):
        return -np.sum(10.0*(x[:,::2]**2.0 - x[:,1::2])**2.0 \
                + (x[:,::2] - 1.0)**2.0, axis=1)
    
    sampler = pc.Sampler(
        prior=prior,
        likelihood=log_likelihood,
        vectorize=True,
    )
    sampler.run()
    
    samples, weights, logl, logp = sampler.posterior() # Weighted posterior samples
    
    logz, logz_err = sampler.evidence() # Bayesian model evidence estimate and uncertainty

    Attribution & Citation

    Please cite the following papers if you found this code useful in your research:

    @article{karamanis2022accelerating,
        title={Accelerating astronomical and cosmological inference with preconditioned Monte Carlo},
        author={Karamanis, Minas and Beutler, Florian and Peacock, John A and Nabergoj, David and Seljak, Uro{\v{s}}},
        journal={Monthly Notices of the Royal Astronomical Society},
        volume={516},
        number={2},
        pages={1644--1653},
        year={2022},
        publisher={Oxford University Press}
    }
    
    @article{karamanis2022pocomc,
        title={pocoMC: A Python package for accelerated Bayesian inference in astronomy and cosmology},
        author={Karamanis, Minas and Nabergoj, David and Beutler, Florian and Peacock, John A and Seljak, Uros},
        journal={arXiv preprint arXiv:2207.05660},
        year={2022}
    }

    Licence

    Copyright 2022-Now Minas Karamanis and contributors.

    pocoMC is free software made available under the GPL-3.0 License. For details see the LICENSE file.

    Visit original content creator repository https://github.com/minaskar/pocomc
  • Object-by-Object

    Object-by-Object

    Auf den Spuren der Zwanziger in Berlin

    Object by Object – Auf den Spuren der Zwanziger in Berlin ist ein Schnitzeljagd-Spiel für iOS-Geräte, das im öffentlichen Raum mit Hilfe von Persistent Augmented Reality (Persistent AR) gespielt werden kann.

    Entstehungskontext

    Diese AR-Anwendung ist ein Prototyp, entstanden im Verbundprojekt museum4punkt0 – Digitale Strategien für das Museum der Zukunft, Teilprojekt Zentrale wissenschaftliche Projektsteuerung. Weitere Informationen: www.museum4punkt0.de

    Förderhinweis

    Das Projekt museum4punkt0 wird gefördert durch die Beauftragte der Bundesregierung für Kultur und Medien aufgrund eines Beschlusses des Deutschen Bundestages.
    BKM-Logo NeustartKultur

    Dokumentation

    Vollständige Dokumentation →

    Update: Um das Eintragen der API-Keys zu vereinfachen, sollten die in der Anleitung beschriebenen Credentials nicht mehr direkt im Code, sondern separat in der Datei

    Credits

    Auftraggeber: Stiftung Preußischer Kulturbesitz, museum4punkt0
    Design und Programmierung: Ekkehard Petzold und Jan Alexander in Zusammenarbeit mit museum4punkt0
    Code und Dokumentation in diesem Repositorium wurden begutachtet durch TICE Software UG (haftungsbeschränkt) (https://tice.software/de/)

    Lizenz

    Copyright (c) 2020 / museum4punkt0, Ekkehard Petzold, Jan Alexander

    Die in diesem Repositorium veröffentlichte Anwendung wird unter der MIT Lizenz veröffentlicht. Näheres siehe in der Lizenz-Datei.

    Sämtliche verwendete Programmteile Dritter sind nachfolgend aufgeführt und stehen unter der MIT-Lizenz:

    Visit original content creator repository https://github.com/museum4punkt0/Object-by-Object
  • Object-by-Object

    Object-by-Object

    Auf den Spuren der Zwanziger in Berlin

    Object by Object – Auf den Spuren der Zwanziger in Berlin ist ein Schnitzeljagd-Spiel für iOS-Geräte, das im öffentlichen Raum mit Hilfe von Persistent Augmented Reality (Persistent AR) gespielt werden kann.

    Entstehungskontext

    Diese AR-Anwendung ist ein Prototyp, entstanden im Verbundprojekt museum4punkt0 – Digitale Strategien für das Museum der Zukunft, Teilprojekt Zentrale wissenschaftliche Projektsteuerung. Weitere Informationen: www.museum4punkt0.de

    Förderhinweis

    Das Projekt museum4punkt0 wird gefördert durch die Beauftragte der Bundesregierung für Kultur und Medien aufgrund eines Beschlusses des Deutschen Bundestages.
    BKM-Logo NeustartKultur

    Dokumentation

    Vollständige Dokumentation →

    Update: Um das Eintragen der API-Keys zu vereinfachen, sollten die in der Anleitung beschriebenen Credentials nicht mehr direkt im Code, sondern separat in der Datei

    Credits

    Auftraggeber: Stiftung Preußischer Kulturbesitz, museum4punkt0
    Design und Programmierung: Ekkehard Petzold und Jan Alexander in Zusammenarbeit mit museum4punkt0
    Code und Dokumentation in diesem Repositorium wurden begutachtet durch TICE Software UG (haftungsbeschränkt) (https://tice.software/de/)

    Lizenz

    Copyright (c) 2020 / museum4punkt0, Ekkehard Petzold, Jan Alexander

    Die in diesem Repositorium veröffentlichte Anwendung wird unter der MIT Lizenz veröffentlicht. Näheres siehe in der Lizenz-Datei.

    Sämtliche verwendete Programmteile Dritter sind nachfolgend aufgeführt und stehen unter der MIT-Lizenz:

    Visit original content creator repository https://github.com/museum4punkt0/Object-by-Object
  • feeding-frenzy

    Feeding Frenzy Game 🐟

    A fun and addictive browser-based fish eating game inspired by the classic Feeding Frenzy. Eat smaller fish to grow bigger while avoiding larger predators!

    🎮 Play Now

    Love casual games? Also check out our popular 2048 Game Collection featuring classic number puzzles and exciting variants!

    ✨ Features

    • Smooth HTML5 Canvas gameplay
    • Multiple fish species with unique behaviors
    • Progressive difficulty scaling
    • Score tracking and achievements
    • Mobile-friendly controls
    • No installation required – play directly in browser

    🎯 How to Play

    1. Control your fish using mouse/touch movements
    2. Eat fish smaller than you to grow larger
    3. Avoid bigger fish that can eat you
    4. Reach size goals to progress through levels
    5. Try to achieve the highest score!

    🔧 Development

    Built with:

    • HTML5 Canvas
    • JavaScript
    • CSS3

    🎲 More Games

    Love this game? Check out our other popular browser games:

    📱 Mobile Support

    Fully playable on mobile devices with touch controls. Also try our mobile-optimized 2048 games for on-the-go entertainment!

    🤝 Contributing

    Contributions welcome! Please read our contributing guidelines before submitting PRs.

    📝 License

    This project is licensed under the MIT License – see the LICENSE file for details.

    🎯 Credits

    Developed by [Your Name]
    Inspired by PopCap’s Feeding Frenzy


    💡 Looking for more puzzle games? Visit 2048games.cc for our full collection of addictive number puzzles and variants!

    Visit original content creator repository
    https://github.com/xianyuye237/feeding-frenzy

  • UTRNet-High-Resolution-Urdu-Text-Recognition

    UTRNet: High-Resolution Urdu Text Recognition

    UTRNet Website arXiv SpringerLink SpringerLink Demo

    Official Implementation of the paper “UTRNet: High-Resolution Urdu Text Recognition In Printed Documents”

    The Poster:

    P2 49-poster

    Using This Repository

    Environment

    • Python 3.7
    • Pytorch 1.9.1+cu111
    • Torchvision 0.10.1+cu111
    • CUDA 11.4

    Installation

    1. Clone the repository
    git clone https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition.git
    
    1. Install the requirements
    conda create -n urdu_ocr python=3.7
    conda activate urdu_ocr
    pip3 install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
    

    Running the code

    1. Training
    python3 train.py --train_data path/to/LMDB/data/folder/train/ --valid_data path/to/LMDB/data/folder/val/ --FeatureExtraction HRNet --SequenceModeling DBiLSTM --Prediction CTC --exp_name UTRNet-Large --num_epochs 100 --batch_size 8
    
    
    1. Testing
    CUDA_VISIBLE_DEVICES=0 python test.py --eval_data path/to/LMDB/data/folder/test/ --FeatureExtraction HRNet --SequenceModeling DBiLSTM --Prediction CTC --saved_model saved_models/UTRNet-Large/best_norm_ED.pth
    
    1. Character-wise Accuracy Testing
    • To create character-wise accuracy table in a CSV file, run the following command
    CUDA_VISIBLE_DEVICES=0 python3 char_test.py --eval_data path/to/LMDB/data/folder/test/ --FeatureExtraction HRNet --SequenceModeling DBiLSTM --Prediction CTC  --saved_model saved_models/UTRNet-Large/best_norm_ED.pth
    
    • Visualize the result by running char_test_vis
    1. Reading individual images
    • To read a single image, run the following command
    CUDA_VISIBLE_DEVICES=0 python3 read.py --image_path path/to/image.png --FeatureExtraction HRNet --SequenceModeling DBiLSTM --Prediction CTC  --saved_model saved_models/UTRNet-Large/best_norm_ED.pth
    
    1. Visualisation of Salency Maps
    • To visualize the salency maps for an input image, run the following command
    python3 vis_salency.py --FeatureExtraction HRNet --SequenceModeling DBiLSTM --Prediction CTC --saved_model saved_models/UTRNet-Large/best_norm_ED.pth --vis_dir vis_feature_maps --image_path path/to/image.pngE
    

    Dataset

    1. Create your own lmdb dataset
    pip3 install fire
    python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/train
    

    The structure of data folder as below.

    data
    ├── gt.txt
    └── test
        ├── word_1.png
        ├── word_2.png
        ├── word_3.png
        └── ...
    

    At this time, gt.txt should be {imagepath}\t{label}\n
    For example

    test/word_1.png label1
    test/word_2.png label2
    test/word_3.png label3
    ...
    

    Downloads

    Trained Models

    1. UTRNet-Large
    2. UTRNet-Small

    Datasets

    1. UTRSet-Real
    2. UTRSet-Synth
    3. IIITH (Updated) (Original)
    4. UPTI (Source)
    5. UrduDoc – Will be made available subject to the execution of a no-cost license agreement. Please contact the authors for the same.

    Text Detection (Supplementary)

    The text detection inference code & model based on ContourNet is here. As mentioned in the paper, it may be integrated with UTRNet for a combined text detection+recognition and hence an end-to-end Urdu OCR.

    Synthetic Data Generation using Urdu-Synth (Supplementary)

    The UTRSet-Synth dataset was generated using a custom-designed robust synthetic data generation module – Urdu Synth.

    End-To-End Urdu OCR Webtool

    This tool was developed by integrating the UTRNet (https://abdur75648.github.io/UTRNe) with a text detection model (YoloV8 finetuned on UrduDoc) for end-to-end Urdu OCR.

    The application is deployed on Hugging Face Spaces and is available for a live demo. You can access it here. If you prefer to run it locally, you can clone its repository and follow the instructions given there – Repo.

    Note: This version of the application uses a YoloV8 model for text detection. The original version of UTRNet uses ContourNet for this purpose. However, due to deployment issues, we have opted for YoloV8 in this demo. While YoloV8 is as accurate as ContourNet, it offers the advantages of faster processing and greater efficiency.

    website

    Updates

    • 01/01/21 – Project Initiated
    • 21/11/22 – Abstract accepted at WIDAFIL-ICFHR 2022
    • 12/12/22 – Repository Created
    • 20/12/22 – Results Updated
    • 19/04/23 – Paper accepted at ICDAR 2023
    • 23/08/23 – Poster presentation at ICDAR 2023
    • 31/08/23 – Webtool made available
    • 31/01/24 – Updated Webtool (with YoloV8) made available via HuggingFace here

    Acknowledgements

    Contact

    Note

    This is an official repository of the project. The copyright of the dataset, code & models belongs to the authors. They are for research purposes only and must not be used for any other purpose without the author’s explicit permission.

    Citation

    If you use the code/dataset, please cite the following paper:

    @InProceedings{10.1007/978-3-031-41734-4_19,
    		author="Rahman, Abdur
    		and Ghosh, Arjun
    		and Arora, Chetan",
    		editor="Fink, Gernot A.
    		and Jain, Rajiv
    		and Kise, Koichi
    		and Zanibbi, Richard",
    		title="UTRNet: High-Resolution Urdu Text Recognition in Printed Documents",
    		booktitle="Document Analysis and Recognition - ICDAR 2023",
    		year="2023",
    		publisher="Springer Nature Switzerland",
    		address="Cham",
    		pages="305--324",
    		isbn="978-3-031-41734-4",
    		doi="https://doi.org/10.1007/978-3-031-41734-4_19"
    }

    License

    Creative Commons License. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License for Noncommercial (academic & research) purposes only and must not be used for any other purpose without the author’s explicit permission.

    Visit original content creator repository https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition
  • PDNet-Plus-Plus_Channel_BBC_Docs


    {Project icon} This image failed to load. It may be due to the file not being reached, or a general error. Reload the page to fix a possible general error.

    By:

    Seanpm2001, Et; Al.

    Top

    README.md


    Read this article in a different language

    Sorted by: A-Z

    Sorting options unavailable

    ( af Afrikaans Afrikaans | sq Shqiptare Albanian | am አማርኛ Amharic | ar عربى Arabic | hy հայերեն Armenian | az Azərbaycan dili Azerbaijani | eu Euskara Basque | be Беларуская Belarusian | bn বাংলা Bengali | bs Bosanski Bosnian | bg български Bulgarian | ca Català Catalan | ceb Sugbuanon Cebuano | ny Chichewa Chichewa | zh-CN 简体中文 Chinese (Simplified) | zh-t 中國傳統的) Chinese (Traditional) | co Corsu Corsican | hr Hrvatski Croatian | cs čeština Czech | da dansk Danish | nl Nederlands Dutch | en-us English English | EO Esperanto Esperanto | et Eestlane Estonian | tl Pilipino Filipino | fi Suomalainen Finnish | fr français French | fy Frysk Frisian | gl Galego Galician | ka ქართველი Georgian | de Deutsch German | el Ελληνικά Greek | gu ગુજરાતી Gujarati | ht Kreyòl ayisyen Haitian Creole | ha Hausa Hausa | haw Ōlelo Hawaiʻi Hawaiian | he עִברִית Hebrew | hi हिन्दी Hindi | hmn Hmong Hmong | hu Magyar Hungarian | is Íslenska Icelandic | ig Igbo Igbo | id bahasa Indonesia Icelandic | ga Gaeilge Irish | it Italiana/Italiano | ja 日本語 Japanese | jw Wong jawa Javanese | kn ಕನ್ನಡ Kannada | kk Қазақ Kazakh | km ខ្មែរ Khmer | rw Kinyarwanda Kinyarwanda | ko-south 韓國語 Korean (South) | ko-north 문화어 Korean (North) (NOT YET TRANSLATED) | ku Kurdî Kurdish (Kurmanji) | ky Кыргызча Kyrgyz | lo ລາວ Lao | la Latine Latin | lt Lietuvis Lithuanian | lb Lëtzebuergesch Luxembourgish | mk Македонски Macedonian | mg Malagasy Malagasy | ms Bahasa Melayu Malay | ml മലയാളം Malayalam | mt Malti Maltese | mi Maori Maori | mr मराठी Marathi | mn Монгол Mongolian | my မြန်မာ Myanmar (Burmese) | ne नेपाली Nepali | no norsk Norwegian | or ଓଡିଆ (ଓଡିଆ) Odia (Oriya) | ps پښتو Pashto | fa فارسی |Persian pl polski Polish | pt português Portuguese | pa ਪੰਜਾਬੀ Punjabi | No languages available that start with the letter Q | ro Română Romanian | ru русский Russian | sm Faasamoa Samoan | gd Gàidhlig na h-Alba Scots Gaelic | sr Српски Serbian | st Sesotho Sesotho | sn Shona Shona | sd سنڌي Sindhi | si සිංහල Sinhala | sk Slovák Slovak | sl Slovenščina Slovenian | so Soomaali Somali | [es en español Spanish | su Sundanis Sundanese | sw Kiswahili Swahili | sv Svenska Swedish | tg Тоҷикӣ Tajik | ta தமிழ் Tamil | tt Татар Tatar | te తెలుగు Telugu | th ไทย Thai | tr Türk Turkish | tk Türkmenler Turkmen | uk Український Ukrainian | ur اردو Urdu | ug ئۇيغۇر Uyghur | uz O’zbek Uzbek | vi Tiếng Việt Vietnamese | cy Cymraeg Welsh | xh isiXhosa Xhosa | yi יידיש Yiddish | yo Yoruba Yoruba | zu Zulu Zulu ) Available in 110 languages (108 when not counting English and North Korean, as North Korean has not been translated yet Read about it here)

    Translations in languages other than English are machine translated and are not yet accurate. No errors have been fixed yet as of March 21st 2021. Please report translation errors here. Make sure to backup your correction with sources and guide me, as I don’t know languages other than English well (I plan on getting a translator eventually) please cite wiktionary and other sources in your report. Failing to do so will result in a rejection of the correction being published.

    Note: due to limitations with GitHub’s interpretation of markdown (and pretty much every other web-based interpretation of markdown) clicking these links will redirect you to a separate file on a separate page that isn’t the intended page. You will be redirected to the .github folder of this project, where the README translations are hosted.

    Translations are currently done with Bing translate and DeepL. Support for Google Translate translations is coming to a close due to privacy concerns.


    Index

    00.0 – Top

    00.1 – Title

    00.2 – Read this article in a different language

    00.3 – Index

    01.0 – Description

    02.0 – About

    03.0 – Wiki

    04.0 – History

    04.1 – Pre-history

    04.2 – Alpha History

    04.3 – Beta History

    04.4 – Modern History

    05.0 – Copying

    06.0 – Credits

    07.0 – Installation

    08.0 – Version history

    09.0 – Version history

    10.0 – Software status

    11.0 – Sponsor info

    12.0 – Contributers

    13.0 – Issues

    13.1 – Current issues

    13.2 – Past issues

    13.3 – Past pull requests

    13.4 – Active pull requests

    14.0 – Resources

    15.0 – Contributing

    16.0 – About README

    17.0 – README Version history

    18.0 – Footer

    18.9 – End of file


    <repo_description>


    About

    See above.


    Wiki

    Click/tap here to view this projects Wiki

    If the project has been forked, the Wiki was likely removed. Luckily, I include an embedded version. You can view it here.


    History

    Write about this projects history here.

    Pre-history

    No pre-history to show for this project.

    Alpha history

    No Alpha history to show for this project.

    Beta history

    No Beta history to show for this project.

    Modern history

    No Modern history to show for this project.


    Copying

    View the copying license for this project here (if you haven’t built the project yet with the makefile, here is the original link: COPYINGL

    Please note that you also have to follow the rules of the GNU General Public License v3 (GPL3) which you can view here


    Credits

    View the credits file for this project and see the people who got together to make this project by clicking/tapping here


    Installation

    View the installation instructions file for this project here

    Requirements: Read the instructions for more info, and get the latest up-to-date instructions here


    Sponsor info

    SponsorButton.png

    You can sponsor this project if you like, but please specify what you want to donate to. See the funds you can donate to here

    You can view other sponsor info here

    Try it out! The sponsor button is right up next to the watch/unwatch button.


    Version history

    Version history currently unavailable

    No other versions listed


    Software status

    All of my works are free some restrictions. DRM (Digital Restrictions Management) is not present in any of my works.

    DRM-free_label.en.svg

    This sticker is supported by the Free Software Foundation. I never intend to include DRM in my works.

    I am using the abbreviation “Digital Restrictions Management” instead of the more known “Digital Rights Management” as the common way of addressing it is false, there are no rights with DRM. The spelling “Digital Restrictions Management” is more accurate, and is supported by Richard M. Stallman (RMS) and the Free Software Foundation (FSF)

    This section is used to raise awareness for the problems with DRM, and also to protest it. DRM is defective by design and is a major threat to all computer users and software freedom.

    Image credit: defectivebydesign.org/drm-free/…


    Contributers

    Currently, I am the only contributer. Contributing is allowed, as long as you follow the rules of the CONTRIBUTING.md file.

      1. seanpm2001 – x commits (As of Yr, DoW, Month, DoM, at ##:## a/pm)
      1. No other contributers.

    Issues

    Current issues

    • None at the moment

    • No other current issues

    If the repository has been forked, issues likely have been removed. Luckily I keep an archive of certain images here

    Read the privacy policy on issue archival here

    TL;DR

    I archive my own issues. Your issue won’t be archived unless you request it to be archived.

    Past issues

    • None at the moment

    • No other past issues

    If the repository has been forked, issues likely have been removed. Luckily I keep an archive of certain images here

    Read the privacy policy on issue archival here

    TL;DR

    I archive my own issues. Your issue won’t be archived unless you request it to be archived.

    Past pull requests

    • None at the moment

    • No other past pull requests

    If the repository has been forked, issues likely have been removed. Luckily I keep an archive of certain images here

    Read the privacy policy on issue archival here

    TL;DR

    I archive my own issues. Your issue won’t be archived unless you request it to be archived.

    Active pull requests

    • None at the moment

    • No other active pull requests

    If the repository has been forked, issues likely have been removed. Luckily I keep an archive of certain images here

    Read the privacy policy on issue archival here

    TL;DR

    I archive my own issues. Your issue won’t be archived unless you request it to be archived.


    Resources

    Here are some other resources for this project:

    Project language file A

    Join the discussion on GitHub

    No other resources at the moment.


    Contributing

    Contributing is allowed for this project, as long as you follow the rules of the CONTRIBUTING.md file.

    Click/tap here to view the contributing rules for this project


    About README

    File type: Markdown Document (*.md *.mkd *.markdown)

    File version: 0.1.6 (Monday, August 23rd 2021 at 6:37 pm)

    Line count (including blank lines and compiler line): 0,407


    README version history

    Version 0.1 (Sunday, March 21st 2021 at 7:50 pm)

    Changes:

    • Started the file
    • Added the title section
    • Added the index
    • Added the about section
    • Added the Wiki section
    • Added the version history section
    • Added the issues section.
    • Added the past issues section
    • Added the past pull requests section
    • Added the active pull requests section
    • Added the contributors section
    • Added the contributing section
    • Added the about README section
    • Added the README version history section
    • Added the resources section
    • Added a software status section, with a DRM free sticker and message
    • Added the sponsor info section

    ITERATION 5

    • Updated the title section
    • Updated the index
    • Added the history section
    • Updated the file info section
    • Updated the file history section

    ITERATION 6

    • Updated the title section
    • Fixed and update template links
    • Updated the index
    • Added the copying section
    • Added the credits section
    • Added the installation section
    • Updated the resources section
    • Updated the contributors section
    • Added the technical notes section
    • Updated the footer
    • Updated the file info section
    • Updated the file history section
    • No other changes in version 0.1

    Version 1 (Coming soon)

    Changes:

    • Coming soon
    • No other changes in version 1

    Version 2 (Coming soon)

    Changes:

    • Coming soon
    • No other changes in version 2

    You have reached the end of the README file

    ( Back to top | Exit to GitHub | Exit to Bing | Exit to DuckDuckGo | Exit to Ecosia )

    EOF


    Visit original content creator repository https://github.com/seanpm2001/PDNet-Plus-Plus_Channel_BBC_Docs
  • ardupilot_gazebo_models

    ArduPilot Gazebo Models

    Note

    This repository is archived. The models can now be found at
    ArduPilot/SITL_Models.


    Gazebo models that can be controlled with ArduPilot using the ArduPilot Gazebo plugin
    (khancyr/ardupilot_gazebo).

    Models

    This is a Gazebo model of Roger Chen’s Sawppy Rover
    integrated with ArduPilot.

    The controller for the model uses the ArduPilot Lua scripting framework to support the custom frame
    and control the 6 wheel motors and 4 steering servos.

    This is a Gazebo model of a Quadruped robot developed by Ashvath in this project: GSoC 2020: Walking Robot Support For Ardupilot.

    The servo mixer for this model uses the ArduPilot Lua scripting framework.

    This is a simple Gazebo model of a rover with car steering and rear wheel drive.

    The servo mixer for this model uses the ArduPilot Lua scripting framewortk.

    This is a simple Gazebo model of a jet boat with twin reversible thrusters.

    The servo mixer for this model uses the ArduPilot Lua scripting framework.

    This is a Gazebo model of a board with castor wheels powered by a steerable rotor.

    This toy model provides an exercise in tuning a vehicle with poor yaw control inspired
    by this ArduPilot Discord post by Peter Barker.

    License

    This is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This software is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.

    Visit original content creator repository
    https://github.com/srmainwaring/ardupilot_gazebo_models

  • bling-erp-api-js

    Bling ERP API – Javascript/Typescript

    install size code coverage

    Pacote de integração com a API v3 do ERP Bling para Javascript/TypeScript. O mais completo existente.

    Atualizado com a versão v310 da API (veja o registro de alterações).

    Atenção: a versão 5.0.0+ do bling-erp-api para Javascript/TypeScript utiliza a API v3 do Bling. Caso deseja utilizar a API v2 do Bling, utilize a versão 4.0.0.

    Instalação

    Para instalar, execute o comando:

    npm i bling-erp-api

    Criação de uma nova conexão

    Para criar uma conexão ao serviço do Bling, basta instanciar o objeto com a API key em seu construtor.

    import Bling from 'bling-erp-api'
    
    const apiKey = 'sua_api_key'
    const blingConnection = new Bling(apiKey)

    Vale destacar que o fluxo de criação e autorização do aplicativo não é feito pela biblioteca. Ou seja, a biblioteca somente recebe o access_token gerado a partir do endpoint /token. Veja a referência.

    Para entender na prática como a autenticação citada acima funciona, veja o projeto de demonstração.

    Entidades disponíveis

    Todas as entidades do Bling atualmente são permitidas para interação. São elas:

    • Borderos (.borderos)
    • Campos customizados (.camposCustomizados)
    • Canais de Venda (.canaisDeVenda)
    • Categorias – Lojas (.categoriasLojas)
    • Categorias – Produtos (.categoriasProdutos)
    • Categorias – Receitas e Despesas (.categoriasReceitasDespesas)
    • Contas a Pagar (.contasPagar)
    • Contas a Receber (.contasReceber)
    • Contas Contábeis (.contasContabeis)
    • Contatos (.contatos)
    • Contatos – Tipos (.contatosTipos)
    • Contratos (.contratos)
    • Depósitos (.depositos)
    • Empresas (.empresas)
    • Estoques (.estoques)
    • Formas de Pagamento (.formasDePagamento)
    • Grupos de Produtos (.gruposDeProdutos)
    • Homologação (.homologacao)
    • Logísticas (.logisticas)
    • Logísticas – Etiquetas (.logisticasEtiquetas)
    • Logísticas – Objetos (.logisticasObjetos)
    • Logísticas – Remessas (.logisticasRemessas)
    • Logísticas – Serviços (.logisticasServicos)
    • Naturezas de Operações (.naturezasDeOperacoes)
    • Notas Fiscais de Consumidor Eletrônicas (.nfces)
    • Notas Fiscais de Serviço Eletrônicas (.nfses)
    • Notas Fiscais Eletrônicas (.nfes)
    • Notificações (.notificacoes)
    • Ordens de Produção (.ordensDeProducao)
    • Pedidos – Compras (.pedidosCompras)
    • Pedidos – Vendas (.pedidosVendas)
    • Produtos (.produtos)
    • Produtos – Estruturas (.produtosEstruturas)
    • Produtos – Fornecedores (.produtosFornecedores)
    • Produtos – Lojas (.produtosLojas)
    • Produtos – Variações (.produtosVariacoes)
    • Propostas Comerciais (.propostasComerciais)
    • Situações (.situacoes)
    • Situações – Módulos (.situacoesModulos)
    • Situações – Transições (.situacoesTransicoes)
    • Usuários (.usuarios)
    • Vendedores (.vendedores)

    Exemplo de uso

    Para listar seus produtos, basta executar:

    import Bling from 'bling-erp-api'
    
    const apiKey = 'sua_api_key'
    const blingConnection = new Bling(apiKey)
    
    const products = await blingConnection.produtos.get()
    
    console.log(products)

    Executando os testes do projeto

    Faça o clone do projeto, instale as dependências e execute:

    npm run test

    Contribuindo ao projeto

    Visit original content creator repository https://github.com/AlexandreBellas/bling-erp-api-js
  • nft-template-in-tact

    NFT Standard in Tact

    Star History Chart!!!

    This GitHub repository is dedicated to an NFT standard (TEP-62), which provides a set of guidelines and specifications for creating and managing non-fungible tokens (NFTs) on blockchain platforms.

    The repository contains a comprehensive collection of code files, documentation, and resources that developers can utilize to implement the standard in their NFT projects. It offers a well-defined structure and functionality for NFT contracts, including features like token metadata, ownership transfers, and token enumeration.

    The repository also includes sample code and examples to help developers understand and implement the NFT standard more easily. Collaborators and contributors actively maintain and update the repository, ensuring it remains up-to-date with the latest advancements and best practices in the NFT ecosystem.

    How to use

    yarn build # To build contract
    yarn test # To run test cases
    yarn deploy # To deploy contract
    yarn read # The way to read the smart contract data after your deployed the code

    Warning

    Remember to change the parameter in contract.deploy.ts file before you run yarn deploy

    Alt text


    alt text – once you run yarn deploy you will get the address of the deployed contract. You can use this address to interact with the contract.

    More

    For more information about this GitHub repository, or if you have any questions related to Tact, feel free to visit:

    If you have more specific questions related to the Tact Language, please refer to:

    Visit original content creator repository https://github.com/howardpen9/nft-template-in-tact